Printed Page: 1 of 2 Subject Code: RCS301

Roll No:

B TECH (SEM-III) THEORY EXAMINATION 2020-21 DISCRETE STRUCTURES & THEORY OF LOGIC

Time: 3 Hours

Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt *all* questions in brief.

 b. How many antisymmetric relations can be from the set A containing n distinct elements? c. Prove that every cyclic group is an abelian group. d. Consider the group (Z, +). Let H = {3n: n ∈ Z}. Show that H is a subgroup of Z. e. Prove that every distributive lattice is modular. f. Find the generating function for the sequence 1 a a² where a is a constant.
 c. Prove that every cyclic group is an abelian group. d. Consider the group (Z, +). Let H = {3n: n ∈ Z}. Show that H is a subgroup of Z. e. Prove that every distributive lattice is modular. f. Find the generating function for the sequence 1 a a² where a is a constant.
 d. Consider the group (Z, +). Let H = {3n: n ∈ Z}. Show that H is a subgroup of Z. e. Prove that every distributive lattice is modular. f. Find the generating function for the sequence 1 a a² where a is a constant.
e. Prove that every distributive lattice is modular. f Find the generating function for the sequence $1 - a - a^2$ where a is a constant
f Find the generating function for the sequence 1, a, a^2 , where a is a constant
1. I find the generating function for the sequence 1, a, a,where a is a constant.
g. Write the converse and contrapositive of the following statement:
"I get success whenever I work hard."

SECTION B

2. Attempt any *three* of the following:

a.	If f: A \rightarrow B and g: B \rightarrow C be one-to-one and onto functions, then prove that gof is also
	one-to-one and onto function. Also prove that $(gof)^{-1} = f^{-1}o g^{-1}$
b.	Define subgroup. Prove that the necessary and sufficient condition for a non-empty
	subset H of a group (G, *) to be a subgroup is a ϵ H, b ϵ H implies $a^*b^{-1} \epsilon$ H.
c.	Prove the De-Morgan's law in Boolean algebra i.e.
	i. $(a+b)' = a' \cdot b'$
	ii. $(a.b)' = a' + b'$
d.	Prove the validity of the following argument "if the races are fixed so the casinos are
	crooked, then the tourist rade will decline. If the tourist trade decreases, then the police
	will be happy. The police force is never happy. Therefore, the races are not fixed."
e.	Prove the following a second
	i. In any kinary tree T on n vertices, the number of pendant vertices is equal to
	(n+1)
	ii. The number of internal vertices in a binary tree is one less than the number of
	pendant vertices.
	SECTION C

3. Attempt any *one* part of the following:

7 x 1 = 7

(a)	Prove by mathematical induction for all positive integers that:
	$4^{2n+1} + 3^{n+2}$ is an integer multiple of 13.
(b)	Let $A = \{2, 3, 4, 5\}$. Then relation R and S on A defined by:
	$R = \{(2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (5, 3)\}$
	$S = \{(2, 3), (2, 5), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5), (5, 2), (5, 5)\}$
	Find the matrices of the above relations. Use the matrices to find the following
	composition of the relation R and S.

4. Attempt any *one* part of the following:

 $7 \ge 1 = 7$

(a)	Let $G = \{(a, b) a, b \in \mathbb{R}, a \neq 0\}$. Define a binary operation * on G by
	$(a, b) * (c, d) = (ac, bc + d) \forall (a, b), (c, d) \in G$. Show that $(G, *)$ is a group.
(b)	State and prove Lagrange theorem for group.

1 | Page

Download all NOTES and PAPERS at StudentSuvidha.com

 $7 \ge 3 = 21$

2 x 7 = 14

Subject Code: RCS301 Roll No:

Attem]	pt any <i>one</i> part of the following:	7 x 1 = 7
(a)	Express the following in the disjunctive normal form: i. $F(x, y, z) = x(y'z)'$ ii. $F(x, y, z) = (x + y).(x + z) + y + z'$	
(b)	Prove that the product of two lattices is a lattice.	
ttem	pt any <i>one</i> part of the following:	7 x 1 = 7
(a)	Show that s is valid conclusion, from the premises $p \Rightarrow q, p \Rightarrow r, \sim (q \rightarrow q)$	\land r) and s \lor p
(b)	Show that $(p \rightarrow r) \land (q \rightarrow r)$ and $(p \lor q) \rightarrow r$ are logically equivalent	t.
ttem	pt any <i>one</i> part of the following:	7 x 1 = 7
(a)	Solve the following recurrence relation:	
	$a_{n+2} - 2a_{n+1} + a_n = 0$ where $a_0 = 2, a_1 = 1$	
	 ii. Complete graph iii. Multigraph iv. Bipartite graph v. Euler and Hamiltonian paths 	
	townload from Sunda	

APER ID-311262

Download all NOTES and PAPERS at StudentSuvidha.com